A,B and C all lie on the line x^2 + y^2 = 49 where A is on the y axis, B is on the X axis and C is the mid point of the straight-line connecting A and B.

As we know that A and B are on the axis so sub in X=0 and Y=0 into the equation to solve for the co-ordinates A and B.For A 02+y2=49y= square root of 49 = 7Do the same for B, which gives: A= (0,7) B= (7,0)To find the midpoint between A and B, we simply add the x coordinates and divide by 2 and do the same for the y coordinates.Xc = (0+7)/2Yc= (7+0)/2So C= (3.5,3.5)

OW
Answered by Oliver W. Maths tutor

3548 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3x+4y=19, x-6y= -23.


How can I prove that an angle in a semi-circle is always 90 degrees?


A square, with sides of length x cm, is inside a circle. Each vertex of the square is on the circumference of the circle. The area of the circle is 49 cm^2. Work out the value of x. Give your answer correct to 3 significant figures.


The equation of the line L1 is y=4x–8. The equation of the line L2 is 3y–12x+4=0. Show that L1 and L2 are parallel.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning