Two masses A and B, 2kg and 4kg respectively, are connected by a light inextensible string and passed over a smooth pulley. The system is held at rest, then released. Find the acceleration of the system and hence, find the tension in the string.

First we draw a diagram of this system (on whiteboard). Remember to label diagram correctly - the tension on both sides act towards each other.
Since B is a larger mass, we know that mass A will move upwards and mass B will fall to the ground. Now we can setup our simultaneous equations:
4g - T = 4a
T - 2g = 2a
Adding these together eliminates T and leaves us with: 4g - 2g = 6a --> 2g = 6a which means that acceleration = g/3
Substituting this back into either one of our first equations:
T = 2a + 2g
T = 2g/3 + 2g
Hence T = 8g/3

Answered by Maths tutor

5798 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


Find the derivative, dy/dx, of y = 8xcos(3x).


Find an equation for the straight line connecting point A (7,4) and point B(2,0)


Identify the stationary points of f(x)=3x^3+2x^2+4 (by finding the first and second derivative) and determine their nature.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning