Differentiate 5x^2+5y^2-6xy=13 to find dy/dx

This is an example of implicit differentiation, where the function in question involves two variables (x and y) and it is hard to rearrange to create a neat "y=..." equation. To differentiate this equation we must differentiate with respect to x (w.r.t.x). The first term of the equation is simple to differentiate, 5x^2 becomes 10x. However the second term 5y^2 is trickier, in this case we keep the 5 constant but the derivative of y^2 w.r.t.x is 2y dy/dx. This is because the derivative of y^2 w.r.t.y is 2y, which we then multiply by dy/dx. This term is therefore 5 times 2y dy/dx so 10y dy/dx.The third term we use the product rule to find the derivative of -6xy is -6x dy/dx - 6y (the basic derivative of y is dy/dx).The 13 on the other side of the = sign is differentiated to 0 as it is only a constant. We are now left with 10x + 10y dy/dx -6x dy/dx -6y =0. Rearranging this for dy/dx we get the answer for dy/dx as (6y-10x)/(10y-6x), or simplified further (3y-10x)/(5y-3x)

HS
Answered by Henry S. Maths tutor

6360 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the inequality 􏰂|2x + 1|􏰂 < 3|􏰂x − 2|􏰂.


f(x) = e^(sin2x) , 0 ≤ x ≤ pi (a). Use calculus to find the coordinates of the turning points on the graph of y = f(x)


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 + 2x + 3. Given that (x-3) is a factor of f(x), express f(x) in factorised form.


Find the value of 2∫1 (6x+1) / (6x2-7x+2) dx, expressing your answer in the form mln(2) + nln(3), where m and n are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning