Differentiate 2cos(x)sin(x) with respect to x

To solve this differential, firstly note that 2cos(x)sin(x) = sin(2x) (by the Double-Angle Sine Identity), this makes computing the differential a lot easier. To differentiate sin(2x) we need to use the chain rule so let, t = 2x then y = sin(t). Differentiating t = 2x with respect to x gives, dt/dx = 2. Differentiating y = sin(t) with respect to t gives, dy/dt = cos(t) Then by the chain rule, dy/dx = dy/dt * dt/dx. So dy/dx = cos(t) * 2 = 2cos(t). Write t in terms of x, we know from our definition of t that t = 2x. Therefore, dy/dx = 2cos(2x) So the differential of 2cos(x)sin(x) with respect to x is 2cos(2x). (Note: To check the answer try computing 2cos(x)sin(x) using the product rule.)

RH
Answered by Ryan H. Maths tutor

6985 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate x^3+ x^2+2=y


Find the Total Area between the curve x^3 -3x^2 +2x and the x-axis, when 0 ≤ x ≤ 2.


What is the best way to prove trig identities?


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences