Why is gravitational potential energy negative?

While on the Earth's surface, you need to put in energy to move upwards, due to the force of gravity from the Earth's mass acting on you - eg jumping upwards requires energy.
The force of gravity is strongest the closer you are to the source of it (eg the planet), and weaker the further you are from it (eg it is zero at an infinite distance)
At an infinite distance, there is no gravitational force acting on you. This means there is also no ability for you to be moved by the force, or in other words your potential energy must be zero.
However, as you move closer to Earth, your potential energy must decrease - the only way this is possible is for it to be negative.
Mathematically:
We know that Newton's law of gravitation is: F = - (GMm)/(r^2)
Minus sign shows it is an attractive force, ie you move opposite to the vector extending radially from the Earth to yourself in free space
And we know a potential associated with a force is: U = - Int[F.dx]
Hence V = -Int[-(GMm)/(r^2).dr]
= Int[(GMm)/(r^2) .dr]
= -GMm/r
At r = infinity, V = 0; at r<infinity, V<0

Answered by Physics tutor

9270 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Calculate the time taken for 1000L of water at rtp to be heated to 40degrees celsius using a 40kW heater


A ball is thrown vertically downwards at a speed of 10ms^-1 from a height of 10m. Upon hitting the floor 10% of the energy is dissipated through waste heat. What is the heighest point the ball reaches before it comes to rest? Take g=10ms^-2


When red light is shone on a metal, regardless of the intensity of this light, no current will flow. However if blue light is shone on this metal a current will flow. Why does this occur?


How does conservation of momentum work when at least one of the bodies in the problem changes mass?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning