Differentiate y = arcsin(x) with respect to x

y = arcsin(x) implies sin(y) = x
Differentiating with respect to x gives: cos(y)*dy/dx = 1So: dy/dx = 1/cos(y)
Noting that cos(y) = sqrt(1 - sin^2(y)): dy/dx = 1/sqrt(1 - sin^2(y)) = 1/sqrt(1 - x^2)

Answered by Maths tutor

3368 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the minimum or maximum of a quadratic function?


Calculate the volume of revolution generated by the function, f(x) = (3^x)√x, for the domain x = [0, 1]


I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


differentiate y=(4x^3)-5/x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences