Differentiate y = arcsin(x) with respect to x

y = arcsin(x) implies sin(y) = x
Differentiating with respect to x gives: cos(y)*dy/dx = 1So: dy/dx = 1/cos(y)
Noting that cos(y) = sqrt(1 - sin^2(y)): dy/dx = 1/sqrt(1 - sin^2(y)) = 1/sqrt(1 - x^2)

Answered by Maths tutor

3789 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is differentiation and how is it done?


how do integrate an equation with a surd or a fraction?


Prove algebraically that n^3+3n^2+2n+1 is odd for all integers n


Differentiate y = 15x^3 + 24x^2 + 6 with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning