Differentiate y = arcsin(x) with respect to x

y = arcsin(x) implies sin(y) = x
Differentiating with respect to x gives: cos(y)*dy/dx = 1So: dy/dx = 1/cos(y)
Noting that cos(y) = sqrt(1 - sin^2(y)): dy/dx = 1/sqrt(1 - sin^2(y)) = 1/sqrt(1 - x^2)

Answered by Maths tutor

3785 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I know which method of diffirentiation to use?


Integrate lnx


Find the exact solution to ln(2y+5) = 2 + ln(4-y)


Use integration to find I = ∫ xsin3x dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning