Differentiate y = arcsin(x) with respect to x

y = arcsin(x) implies sin(y) = x
Differentiating with respect to x gives: cos(y)*dy/dx = 1So: dy/dx = 1/cos(y)
Noting that cos(y) = sqrt(1 - sin^2(y)): dy/dx = 1/sqrt(1 - sin^2(y)) = 1/sqrt(1 - x^2)

Answered by Maths tutor

3203 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Explain how Differentiation by the chain rule works


The line l1 has equation 4y - 3x = 10. Line l2 passes through points (5, -1) and (-1, 8). Determine whether the lines l1 and l2 are parallel, perpendicular or neither.


Solve the differential equation dx/dt = -2(x-6)^(1/2) for t in terms of x given that x = 70 when t = 0.


You are given the equation of the line y=x^3+x^2-2x. Find the stationary points of the curve and determine the maximum and minimum points and find where it crosses the x-axis and thus sketch the graph


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences