Answers>Maths>IB>Article

How do I derive the indefinite integral of sine?

The integral of sine is pretty easy to remember as it is -cos + C. However you need to be able to prove this, without using the integral of cosine. This method uses sines exponential form.

As eiθ​ = cosθ + isinθ, sine can be expressed as sinθ = (eiθ​- e-iθ​) / 2i. This can make the integration easier as the indefinite integral of ekx = (1/k)ekx and the indefinite integral of e-kx = (-1/k)e-kx

Thus ∫sinx dx = ∫(eix- e-ix) / 2i dx = (1/2i)[ ∫eixdx - ∫e-ix dx] = (1/2i)[eix/i + e-ix​/i] + C =  [-(eix​ + e-ix) / 2]  + C.

Now just as sine can be expressed using complex numbers so can cosine such that cosθ = (eiθ​ + e-iθ​) / 2.

Thus  ∫sinx dx = [-(eix​ + e-ix) / 2]  + C = - cosx + C

LC
Answered by Lucile C. Maths tutor

2543 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Prove by mathematical induction that (2C2)+(3C2)+(4C2)+...+(n-1C2) = (nC3).


Two functions, y1 & y2, are given by y1=x^2+16x+4; y2=2(3x+2). Find analytically the volume of the solid created by revolving the area between the two curves by 2pi radians around the x-axis. N.B. y2>y1 on the interval between the points of intersection.


What is the simples way to integrate by part?


Find cos4x in terms of cosx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences