Answers>Maths>IB>Article

How do I derive the indefinite integral of sine?

The integral of sine is pretty easy to remember as it is -cos + C. However you need to be able to prove this, without using the integral of cosine. This method uses sines exponential form.

As eiθ​ = cosθ + isinθ, sine can be expressed as sinθ = (eiθ​- e-iθ​) / 2i. This can make the integration easier as the indefinite integral of ekx = (1/k)ekx and the indefinite integral of e-kx = (-1/k)e-kx

Thus ∫sinx dx = ∫(eix- e-ix) / 2i dx = (1/2i)[ ∫eixdx - ∫e-ix dx] = (1/2i)[eix/i + e-ix​/i] + C =  [-(eix​ + e-ix) / 2]  + C.

Now just as sine can be expressed using complex numbers so can cosine such that cosθ = (eiθ​ + e-iθ​) / 2.

Thus  ∫sinx dx = [-(eix​ + e-ix) / 2]  + C = - cosx + C

LC
Answered by Lucile C. Maths tutor

2672 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find a and b (both real) when (a+b*i)^2=i.


When do you use 'n choose k' and where does the formula come from?


Given that y = arcos(x/2) find dy/dx of arccos(x/2) and hence find the integral from 0 to 1 of arcos(x/2)dx


What is the meaning of vector cross product?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning