Answers>Maths>IB>Article

How do I derive the indefinite integral of sine?

The integral of sine is pretty easy to remember as it is -cos + C. However you need to be able to prove this, without using the integral of cosine. This method uses sines exponential form.

As eiθ​ = cosθ + isinθ, sine can be expressed as sinθ = (eiθ​- e-iθ​) / 2i. This can make the integration easier as the indefinite integral of ekx = (1/k)ekx and the indefinite integral of e-kx = (-1/k)e-kx

Thus ∫sinx dx = ∫(eix- e-ix) / 2i dx = (1/2i)[ ∫eixdx - ∫e-ix dx] = (1/2i)[eix/i + e-ix​/i] + C =  [-(eix​ + e-ix) / 2]  + C.

Now just as sine can be expressed using complex numbers so can cosine such that cosθ = (eiθ​ + e-iθ​) / 2.

Thus  ∫sinx dx = [-(eix​ + e-ix) / 2]  + C = - cosx + C

LC
Answered by Lucile C. Maths tutor

2655 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Prove by induction that 7^(8n+3) + 2 is divisible by 5, where n is a natural number.


Solve: 1/3 x = 1/2 x + (− 4)


Let Sn be the sum of the first n terms of the arithmetic series 2+4+6+... . Find (i) S4 ; (ii) S100 .


When finding single or multiple probabilities using the binomial distribution on the calculator, which function do I use respectively?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning