Find the gradient of 4(8x+2)^4 at X coordinate 2

To find a gradient at a given point, first we differentiate then we sub in the x coordinate of the point. To differentiate 4(8x+2)4 we must use the chain rule. First we let u= 8x+2 and differentiate this to find du/dx = 8. Then we must find the rest, we differentiate y = 4u4 , dy/du = 16u3 . The chain rule then states that dy/dx = dy/du x du/dx so we get 16u3 x 8 and as u = 8x+2 we get: 128(8x+2)3.To find the value at X coordinate 2 we sub the value into dy/dx and get 128(8(2)+2)3 multiply this out and we get 128 x 183 = 746,946. So the gradient of 4(8x+2)4 at X coordinate 2 is 746,946.

Answered by Maths tutor

3611 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you express (11+x-x^2)/[(x+1)(x-2)^2] in terms of partial fractions?


Given that y={(x^2+4)(x−3)}/2x, find dy/dx in its simplest form.


How do I calculate the eigenvalues and eigenvectors of a 2x2 matrix, and what is the point of doing this calculation?


Why is there always constant of integration when you evaluate an indefinite integral?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning