Find y if dy/dx = y² sec²(x), given that y(0) = 1

1/y² dy/dx = sec²(x)∫ 1/y² dy/dx dx = ∫ sec²(x) dx-1/y + C1 = tan(x) + C2y = -1/(tan(x) + A) where A = C2 - C1y(0) = -1/A so y(0) = 1 means A = -1. Finished!

NM
Answered by Nikolai M. Maths tutor

3319 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(a) Find the differential of the the function, y = ln(sin(x)) in its simplest form and (b) find the stationary point of the curve in the range 0 < x < 4.


Solving harder exponential equations, e.g. 5/[exp(x) + 6exp(-x)] - 1 = 0 . CORE MATHS.


(x-4)^3


What is a derivative and how do we calculate it from first principles?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences