Find y if dy/dx = y² sec²(x), given that y(0) = 1

1/y² dy/dx = sec²(x)∫ 1/y² dy/dx dx = ∫ sec²(x) dx-1/y + C1 = tan(x) + C2y = -1/(tan(x) + A) where A = C2 - C1y(0) = -1/A so y(0) = 1 means A = -1. Finished!

NM
Answered by Nikolai M. Maths tutor

3262 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the volume of the solid formed by the curve y=cos(x/2), as it is rotated 360° around the x-axis between x= π/4 and x=3π/4, is of the form π^2/a. Find the constant a.


Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.


I don't understand integration by parts - can you explain it please?


(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences