Find y if dy/dx = y² sec²(x), given that y(0) = 1

1/y² dy/dx = sec²(x)∫ 1/y² dy/dx dx = ∫ sec²(x) dx-1/y + C1 = tan(x) + C2y = -1/(tan(x) + A) where A = C2 - C1y(0) = -1/A so y(0) = 1 means A = -1. Finished!

NM
Answered by Nikolai M. Maths tutor

3617 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the roots of this equation: y=(8-x)lnx


How many lines of method should I write in order to get all of the marks?


Express x^2-7x+2 in the form (x-p)^2+q where p and q are rational. Hence or otherwise find the minimum value of x^2-7x+2


The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning