Find y if dy/dx = y² sec²(x), given that y(0) = 1

1/y² dy/dx = sec²(x)∫ 1/y² dy/dx dx = ∫ sec²(x) dx-1/y + C1 = tan(x) + C2y = -1/(tan(x) + A) where A = C2 - C1y(0) = -1/A so y(0) = 1 means A = -1. Finished!

NM
Answered by Nikolai M. Maths tutor

3758 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

C1 - Simplifying a fraction that has a root on the denominator


Use integration by parts to find ∫x e^(x)


The curve C has equation ye^(-2x) = 2x + y^2. Find dy/dx in terms of x and y.


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning