Prove that 8 times any triangle number is always 1 less than a square number

A triangle number is a number such that it is the sum of n consecutive integers, starting from 0. Eg 1, 1+2, 1+2+3... are the first 3 triangle numbers. The formula for the nth triangle number is well-known at A-level and is (1/2)(n)(n+1); the formula for the sum of the first n integers. To answer the question we must show that 8N+1, where N is any triangle number, is a perfect square.
8N+1 = 8(1/2)(n)(n+1)+1 = 4n(n+1)+1=4n^2 + 4n + 1This is a perfect square, as we can rewrite it as:(2n+1)^2with it's root of 2n+1 being an integer. Therefore we have shown that 8N+1 is a perfect square, hence the result has been proved.

Answered by Maths tutor

10094 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate (x^2 + 3x + 3)/(x+3)


Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.


Find the integral of sin^2(X)


Find the solution to ln(3)+ln(x)=ln(6)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning