ABCD is a rectangle with sides of lengths x centimetres and (x − 2) centimetres.If the area of ABCD is less than 15 cm^2 , determine the range of possible values of x.

First you interpret the given information and create an equation based on the question. x(x-2)<15. Then you express that equation in standard quadratic form: x^2-2x-15<0. Then you have to not forget that x cannot be smaller than 2, because a side of a rectangle cannot be negative. Then you factorise the equation: (x-5)(x+3)<0. And finally you come to the conclusion that the state range is 2<x<5.

Answered by Maths tutor

6048 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


Differentiate 3x^(2)+xy+y^(2)=12 with respect to x


Integration by parts; ∫e^x sin(x) dx


Integrate 4x^3 + 6x^2 +4x + 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning