Given that y =2x^3 + 3/(x^2), find a) dy/dx and b) the integral of y

a) It is useful to rewrite the equation using power rules, so we get y = 2x3 + 3x-2Now we can simply use the differentiation rules where we multiply the coefficient (number before x) by the power, then reducing the power by one.This way we get dy/dx = 6x2 - 6x-3b) Once again it is simpler to integrate y = 2x3 + 3x-2We use the integration rules of increasing the power by one then dividing the coefficient by the new power:(2x4)/4 + (3x-1)/1 + c= (x4)/2 - 3x-1 + cRemember, as we are doing indefinite integration (integrating y but not between 2 limits), we must add a constant that we can call c.

BS
Answered by Balint S. Maths tutor

7591 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) Integrate ln(x) + 1/x - x to find the equation for Curve A b) find the x coordinate on Curve A when y = 0.


Given x=Sqrt(3)sin(2t) and y=4cos^2(t), where 0<t<pi. Show that dy/dx = kSqrt(3)tan(2t).


When I integrate by parts how do I know which part of the equation is u and v'?


Express x^2 - 7x + 2 in the form (x - p)^2 + q , where p and q are rational numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning