How to differentiate y = xcos(x)

You would first of all establish which differentiation rule is required, for this question it would be useful to use the product rule splitting xcos(x) into x multiplied by cos(x). We can label u = x and v = cos(x). Then differentiate u with respect to x to obtain, du/dx = 1. and differentiate v with respect to x to obtain dv/dx = -sin(x). Now using the product rule: dy/dx = v(du/dx) + u(dv/dx), we can plug in our previously calculated values u,v,(du/dx),(dv/dx) to obtain the answer: dy/dx = cos(x)(1) + x(-sin(x)) = cos(x) -xsin(x).

SC
Answered by Sophie C. Maths tutor

5872 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the inverse of a function?


f(x)=x^3 + x^2 -10x +8 show that (x-1) is a factor of f(x), Factorise f(x) fully , sketch the graph of f(x)


Perhaps an introduction to integration with a simple integral, e.g. the integral of x^2


Find, using calculus, the x coordinate of the turning point of the curve y=e^(3x)*cos(4x) pi/4<x<pi/2 (Edexcel C3)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences