How to differentiate y = xcos(x)

You would first of all establish which differentiation rule is required, for this question it would be useful to use the product rule splitting xcos(x) into x multiplied by cos(x). We can label u = x and v = cos(x). Then differentiate u with respect to x to obtain, du/dx = 1. and differentiate v with respect to x to obtain dv/dx = -sin(x). Now using the product rule: dy/dx = v(du/dx) + u(dv/dx), we can plug in our previously calculated values u,v,(du/dx),(dv/dx) to obtain the answer: dy/dx = cos(x)(1) + x(-sin(x)) = cos(x) -xsin(x).

SC
Answered by Sophie C. Maths tutor

6853 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A particle A of mass 0.1kg is moving at a speed of 1.5m/s to the right. It collides with a particle B of mass 0.3kg moving at a speed of 1.1m/s to the right. Calculate change in momentum of particle A if particle B has a speed of 1.4m/s after collision.


When using the trapezium rule to approximate area underneath a curve between 2 limits, what is the effect of increasing the number of strips used?


The shortest side of a triangle is 4.3m long. Two of the angles are 45.1 and 51.2 degrees respectively. Find the length of the longest side.


Solve the following equation: x^(3) - 6x^(2) + 11x - 6 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning