Find the integral of: sin^4(x)*cos(x)dx

This is a standard integral of the type f'(x)*f(x)n. To find the solution, we trial d/dx(f(x)n+1). d/dx(sin5(x)) = 5sin4(x)cos(x). this looks similar to the integral we were asked to solve, apart from a factor of 5. so we multiply by 5 inside the integral, and divide by 5 outside the integral. now that the inside of the integral looks like 5sin4(x)cos(x), we know this integrates into sin5(x). so the solution is (1/5)*sin5(x)

Answered by Maths tutor

5534 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The polynomial f(x) is defined by f(x) = 18x^3 + 3x^2 + 28x + 12. Use the Factor Theorem to show that (3x+2) is a factor of f(x).


How to integrate e^(5x) between the limits 0 and 1.


What is the value of sin(theta), cos(theta), tan(theta) where theta = 0, 30, 45, 60, 90


Calculate the integral of (3x+3)/(2x^2+3x) between the limits 39 and 3


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning