Differentiate f(x) = x sin(x)

In this question, we have the product of two separate terms, so we will choose to use the product rule for this question. Recall, for f(x) = u(x) v(x): f'(x) = u'(x) v(x) + u(x) v'(x). Here, we can set u(x) = x and v(x) = sin(x). Differentiating both terms with respect to x, we obtain u'(x) = 1 and v'(x) = cos(x). Using the product rule, this gives us:f'(x) = 1 * sin(x) + x cos(x) = sin(x) + x cos(x)

AS
Answered by Andrea S. Maths tutor

2876 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you use the chain rule?


Do y=3x^2+5x+12 and y=3x-8 intercept with each other? If yes, at which point(s)?


Find the solutions to x^3+4x^2+x-5=1


A curve passes through the point (4, 8) and satisfies the differential equation dy/dx = 1/ (2x + rootx) , Use a step-by-step method with a step length of 0.3 to estimate the value of y at x = 4.6 . Give your answer to four decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning