How do i change a recurring decimal into a fraction?

Let's take 0.666... as an example. In this case we can say x = 0. 666... The next step is to multiply both sides of the equation by 10 so that you end up with 10x = 6.666... Now that we have these 2 equations it is possible to eliminate the recurring part of the decimal as we can subtract x from 10x to end up with 9x = 6. The final part is to divide both sides of the equation such that we have x on its own on the left hand side, leaving us with x = 6/9 which can be simplified to x = 2/3.

GL
Answered by Gail L. Maths tutor

2819 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make A the subject of the following formula: S = UT + 1/2AT^2


Factorise the quadratic equation: x^2 + 5x + 6 = 0 and hence find the two solutions to the equation.


Expand and simplify (x-2)(2x+3)(x+1)


A bag has 3 red balls and 5 green balls. I take out 2 balls, without replacing them. What is the probability of choosing at least one red ball? Give your answer to 3 decimal places.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning