How do i change a recurring decimal into a fraction?

Let's take 0.666... as an example. In this case we can say x = 0. 666... The next step is to multiply both sides of the equation by 10 so that you end up with 10x = 6.666... Now that we have these 2 equations it is possible to eliminate the recurring part of the decimal as we can subtract x from 10x to end up with 9x = 6. The final part is to divide both sides of the equation such that we have x on its own on the left hand side, leaving us with x = 6/9 which can be simplified to x = 2/3.

GL
Answered by Gail L. Maths tutor

2751 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 720 boys in a school and 700 girls. The probability that a girl chosen at random studies french is 3/5 and the probability that a boy chosen at random studies french is 2/3. What is the total number of students in the school that study french?


Adam is going to get a loan of £ 720 to help pay for the holiday. Adam will have to pay back the £ 720 plus interest of 15 %. He will pay this back in 12 equal monthly installments. How much money will Adam pay back each month?


One of the teachers at a school is chosen at random. The probability that this teacher is female is 3/5. There are 36 male teachers at the school. Work out the total number of teachers at the school.


Rearrange the following formula to make x the subject. y=4x-7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning