How do i change a recurring decimal into a fraction?

Let's take 0.666... as an example. In this case we can say x = 0. 666... The next step is to multiply both sides of the equation by 10 so that you end up with 10x = 6.666... Now that we have these 2 equations it is possible to eliminate the recurring part of the decimal as we can subtract x from 10x to end up with 9x = 6. The final part is to divide both sides of the equation such that we have x on its own on the left hand side, leaving us with x = 6/9 which can be simplified to x = 2/3.

GL
Answered by Gail L. Maths tutor

2636 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

how do you know if two straight lines on a graph are parallel or perpendicular?


how to convert a decimal into a fraction, let the decimal be 0.75


Solve the equation, x + 1 = x/2 + 4


If the area of a sector of a circle is 3*pi cm^2 and the circle has a radius of 6cm, what is the angle of the sector?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences