How do i change a recurring decimal into a fraction?

Let's take 0.666... as an example. In this case we can say x = 0. 666... The next step is to multiply both sides of the equation by 10 so that you end up with 10x = 6.666... Now that we have these 2 equations it is possible to eliminate the recurring part of the decimal as we can subtract x from 10x to end up with 9x = 6. The final part is to divide both sides of the equation such that we have x on its own on the left hand side, leaving us with x = 6/9 which can be simplified to x = 2/3.

GL
Answered by Gail L. Maths tutor

3043 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 3(m + 4) – 2(4m + 1)


If a line t (f(x) = 2x +3) is perpendicular to a line n that passes through point (3,7), what is the equation of line n?


A bag contains 10 apples. Three of the apples are green and seven of the apples are red. If an apple is pulled from the bag at random, what is the probability that the apple will be green?


Electricity: 23.15 cents p/day plus 13.5 cents p/unit used Gas price: 24.5 cents p/day plus 5.5 cents p/unit used (a)(i) In 90 days, a family used 1885 units of electricity. Calculate the total cost, in dollars, of the electricity they used.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning