How do i change a recurring decimal into a fraction?

Let's take 0.666... as an example. In this case we can say x = 0. 666... The next step is to multiply both sides of the equation by 10 so that you end up with 10x = 6.666... Now that we have these 2 equations it is possible to eliminate the recurring part of the decimal as we can subtract x from 10x to end up with 9x = 6. The final part is to divide both sides of the equation such that we have x on its own on the left hand side, leaving us with x = 6/9 which can be simplified to x = 2/3.

GL
Answered by Gail L. Maths tutor

3045 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

An exam has two papers. Alan scores: 33 out of 60 on paper 1 & 75 out of 100 on paper 2. Work out his percentage score for the exam?


Solve algebraically 6a + b = 16 & 5a - 2b = 19


A graph is given with a plot of y = sin(x) for 0 <= x <= 360. Which value of x in the range 90 <= x <= 180 satisfies sin(x) = sin(30)?


Make x the subject of the following formula: 2x-4=2y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning