If y^3 = 8.08, approximate y.

Firstly, recognize that 2^3 is 8, so y must be close to 8.It will be helpful to then write y^3 as y^3= 8 + 0.08We can then factorize out 8.y^3=8(1+0.01)If we try and take the cube root of this expression.y=2(1+0.01)^(1/3)
We recognize this is a binomial expansion, if we label x as 0.01 we can see a more familiar form y=2(1+x)^1/3
Expanding this and truncating the expansion for the first order term, we are left with y = 2 + 2x/3
Substituting in, x=0.01 we get y being roughly equal to 2.01

SH
Answered by Sanjith H. Maths tutor

2836 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate by parts the following function: ln(x)/x^3


Differentiate y = (6x-13)^3 with respect to x


Find the general solution of the differential equation: d^2x/dt^2 + 5dx/dt + 6x = 2cos(t) - sin(t)


Solve the equation x^6 + 26x^3 − 27 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning