If y^3 = 8.08, approximate y.

Firstly, recognize that 2^3 is 8, so y must be close to 8.It will be helpful to then write y^3 as y^3= 8 + 0.08We can then factorize out 8.y^3=8(1+0.01)If we try and take the cube root of this expression.y=2(1+0.01)^(1/3)
We recognize this is a binomial expansion, if we label x as 0.01 we can see a more familiar form y=2(1+x)^1/3
Expanding this and truncating the expansion for the first order term, we are left with y = 2 + 2x/3
Substituting in, x=0.01 we get y being roughly equal to 2.01

SH
Answered by Sanjith H. Maths tutor

2803 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate x^2 + 7x + 4


Given the equation 3x^2 + 4xy - y^2 + 12 = 0. Solve for dy/dx in terms of x and y.


Differentiate 5x^3 + 4x^2 + 5x + 9


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning