If y^3 = 8.08, approximate y.

Firstly, recognize that 2^3 is 8, so y must be close to 8.It will be helpful to then write y^3 as y^3= 8 + 0.08We can then factorize out 8.y^3=8(1+0.01)If we try and take the cube root of this expression.y=2(1+0.01)^(1/3)
We recognize this is a binomial expansion, if we label x as 0.01 we can see a more familiar form y=2(1+x)^1/3
Expanding this and truncating the expansion for the first order term, we are left with y = 2 + 2x/3
Substituting in, x=0.01 we get y being roughly equal to 2.01

SH
Answered by Sanjith H. Maths tutor

2507 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I use implicit differentiation to differentiate functions such as: y=tan^-1(ax^2+b) in the form of dy/dx=.....?


Differentiate this equation: xy^2 = sin(3x) + y/x


Integrate f(x): f(x) = (3x +2) / (x^2 - 5x +6)


Differentiate y= exp(cos^2(x)+sin^2(x)) by using the chain rule.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences