The area of a parallelogram is given by the equation 2(x)^2+7x-3=0, where x is the length of the base. Find: (a) The equation of the parallelogram in the form a(x+m)^2+n=0. (b) The value of x.

(a)STEP 1: Take out the coefficient of x^2 from the x^2 and x terms.
2(x)2+7x-3=0 2(x2+(7/2)x)-3=0
STEP 2: Complete the Square by finding (b/2)2.
(b/2)2.= (7/4)2Therefore, 2[(x+(7/4))2-(7/4)2]-3=0
STEP 3: Expand and Simplify.
2[(x+(7/4))2-(49/16)]-3=0 2(x+(7/4))2-(49/8) -3=0 2(x+(7/4))2-(73/8)=0
(b) 2(x+(7/4))2 =(73/8) (x+(7/4))2=(73/16) x=(-7/4)+(73/16)(1/2)or (-7/4)-(73/16)(1/2) x=0.386 or -3.886
However as x is the value of a length, x>0.
Therefore, x=0.386.

MA
Answered by Marco A. Maths tutor

2824 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

White paint costs £2.80 per litre. Blue paint costs £3.50 per litre. White paint and blue paint are mixed in the ratio 3 : 2 Work out the cost of 18 litres of the mixture.


How do I solve the following question. 'Find the values of x such that 2log3(x) - log3(x-2) = 2'.


Write down the value of 169^1/2 (one hundred and sixty nine to the power of a half)


Solve the inequality x^2 – x < 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning