A buffer solution was formed by mixing 20.0 cm^3 of sodium hydroxide solution of concentration 0.100 mol dm^–3 with 25.0 cm^3 of ethanoic acid of concentration 0.150 mol dm^–3. CH3COOH + NaOH---CH3COONa + H2O Calculate the pH of this buffer solution.

Ka for ethanoic acid = 1.74 × 10–5 mol dm–3 also given in question. moles = concentration x volume / 1000Ka = [H+] [A-]/[HA]pH = -log [H+]
initial moles:NaOH: 20x0.1/1000 = 0.002molCH3COOH: 25 x 0.15 / 1000 = 0.00375
NaOH< CH3COOH and react in 1:1 ratio, so all NaOH reacts.
final moles:CH3COO- Na+ = initial moles NaOH = 0.002molCH3COOH = 0.00375 - 0.002 = 0.00175
final concentrations (remember to use total volume of 45 cm3)[CH3COO- Na+] = 1000 x 0.002 / 45 = 0.04444 moldm-3 = [A-][CH3COOH] = 1000 x 0.00175 /45 = 0.03889 moldm-3 = [HA]from Ka:[H+] = Ka [HA] / [A-] = 1.74 x 10 -5 x 0.03889 / 0.04444 = 1.523 x 10 -5pH = -log [H+] = 4.82


Answered by Chemistry tutor

10097 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

When testing for primary, secondary, and teritary alcohols what is the testing reagent and the results of the test?


Describe the Le Chantelier principle


What are isotopes and how do they differ from each other?


Define a transition metal


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning