Answers>Maths>IB>Article

Find cos4x in terms of cosx.

As with any question involving sines and cosines, consider complex numbers as a likely way to find the answer. For this particular kind of question, where sin/cos of a multiple of x is needed in terms of sinx/cosx, or vice versa, the complex number representation z = cosx + isinx must be expanded in two ways. 

Firstly, expand using de Moivre's Theorem:

z = cosx + isinx

z4 = (cosx + isinx)4 =  cos4x + sin4x

Then, expand using the binomial expansion formula to get powers of cosx:

z4 = (cosx + isinx)4 = cos4x + 4icos3xsinx + 6i2cos2xsin2x + 4i3cosxsin3x + i4sin4x

                               = cos4x + 4icos3xsinx - 6cos2xsin2x - 4icosxsin3x + sin4x

Equate the real parts of both expansions to get cos equivalence:

cos4x = cos4x - 6cos2xsin2x + sin4x

Use cos2x + sin2x = 1 as a substitution:

cos4x = cos4x - 6cos2x(1-cos2x) + (1-cos2x)2

          = 8cos4x - 8cos2x + 1

ES
Answered by Ellie S. Maths tutor

20102 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

IB exam question: Let p(x)=2x^5+x^4–26x^3–13x^2+72x+36, x∈R. For the polynomial equation p (x) = 0 , state (i) the sum of the roots; (ii) the product of the roots.


Prove 2^(n+2) + 3^(2n+1) is a multiple of 7 for all positive integers of n by mathematical induction.


Consider the functions f and g where f(x)=3x-5 and g(x)=x-2. (a) Find the inverse function for f. (b) Given that the inverse of g is x+2, find (g-1 o f)(x).


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning