Integrate 1/(1 - 3*x) with respect to x

First substitute: u = 1 - 3xNext calculate: du/dx = -3 .... therefore dx = (-1/3) * duNow re-arrange the expression: Integrate 1/u * ( -1/3)*duNext recall the integral of 1/x is the natural logarithm, and remember the constant! The integral is: (-1/3)*ln(u) + cNow replace u: (-1/3)*ln(1-3x) + c

NM
Answered by Neil M. Maths tutor

2943 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation cosec^2(x) = 1 + 2cot(x), for -180° < x ≤ 180°.


What does it mean to differentiate a function?


Show that tan(x) + cot(x) = 2cosec(2x)


A curve has the equation y=12+3x^4. Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences