Integrate 1/(1 - 3*x) with respect to x

First substitute: u = 1 - 3xNext calculate: du/dx = -3 .... therefore dx = (-1/3) * duNow re-arrange the expression: Integrate 1/u * ( -1/3)*duNext recall the integral of 1/x is the natural logarithm, and remember the constant! The integral is: (-1/3)*ln(u) + cNow replace u: (-1/3)*ln(1-3x) + c

NM
Answered by Neil M. Maths tutor

2913 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do rearrange y to make it the subject of an equation?


A curve has parametric equations x = 1 - cos(t), y = sin(t)sin(2t) for 0 <= t <= pi. Find the coordinates where the curve meets the x-axis.


Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0


Integrate, by parts, y=xln(x),


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences