What is the coefficient of x^4 in the expansion of (x+3)^7

Start by expanding (a+b)7, using Pascal's Triangle or the binomial coefficient function to work out the coefficients:a7 + 7a6b + 21a5b2 + 35a4b3 + 35a3b4 + 21a2b5 + 7ab6 + b7 , where a=x and b=3As the question wants the coefficient of x3, we need to look for a3 . The expansion gives 35a3b4, so we must substitute values in for a and b. As stated earlier, a=3 and b=3, hence; 35a3b4 = 35 * x3 * 34 = 35 * 81 * x3 = 2835x3Therefore the coefficient of x3 is 2835

JW
Answered by Josef W. Maths tutor

8098 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a curve has the equation f'(x) = 18x^2-24x-6 and passes through the point (3,40), use integration to find f(x) giving each answer in its simplest form.


Find the exact value of dy/dx at (-2,4) of the curve C: 4x^2 -y^2 + 6xy + 2^y = 0


Given that 9 sin^2y-2 sin y cos y=8 show that (tany - 4)(tany + 2)= 0


By completing the square, find the values of x that satisfy x^4 -8x^2 +15 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning