Prove that the difference of any two consecutive square numbers is odd

It is important we first define what we mean by an odd and even number.
An even number is any integer (whole number) number divisible by 2 so we can express any even number as 2x where x is any integer. When counting, every even number is followed by an odd number; 1,2,3... etc.
We can then express any odd number as 2x+1 as it will just be the next number after 2x i.e. add one.
Now any square number can be expressed as n^2 where n is any integer. The next square number can also be written as (n+1)^2 since it will be the square of the next number after n i.e. n+1.
As such, the difference of any two consecutive square numbers can be written as (n+1)^2 - n^2   
Expanding this we get (n^2 + 2n + 1) - n^2
This reduces to 2n+1 since the n^2 values cancel.
Since any odd number can be written in the form 2x+1  where x is any integer as earlier defined, 2n+1 is an odd number for any value of n which completes the proof.  

AH
Answered by Amar H. Maths tutor

64006 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve (x+2)/3x + (x-2)/2x = 3


Make y the subject of the formula p=((x+y)/5)^(1/2)


A four sided pyramid, with a vertical height of 10cm and the base 4cmx4cm is placed on the top of a cylinder with radius 1.5cm and a height of 15cm. What is the exposed surface area?


In a school, there is a total of 640 children. The ratio of Girls to boys is 7:9. How many boys are there in this school?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences