Prove that the difference of any two consecutive square numbers is odd

It is important we first define what we mean by an odd and even number.
An even number is any integer (whole number) number divisible by 2 so we can express any even number as 2x where x is any integer. When counting, every even number is followed by an odd number; 1,2,3... etc.
We can then express any odd number as 2x+1 as it will just be the next number after 2x i.e. add one.
Now any square number can be expressed as n^2 where n is any integer. The next square number can also be written as (n+1)^2 since it will be the square of the next number after n i.e. n+1.
As such, the difference of any two consecutive square numbers can be written as (n+1)^2 - n^2   
Expanding this we get (n^2 + 2n + 1) - n^2
This reduces to 2n+1 since the n^2 values cancel.
Since any odd number can be written in the form 2x+1  where x is any integer as earlier defined, 2n+1 is an odd number for any value of n which completes the proof.  

AH
Answered by Amar H. Maths tutor

63752 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Make A the subject of the following formula: S = UT + 1/2AT^2


Adam buys 4kg of sweets and pays £10 for them. Adam puts all of the sweers into bags with 250g in each bag. He sells the bags for 70p each. All the bags of sweets are sold, what is the percentage profit?


What is the probability that you pick a blue ball from a bag of 3 blue balls, 4 red balls and 2 black balls


what is the gradient and y intercept of the equation y=7x+7


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences