Find the shortest distance between the line L: x=1+t, y=1+2t, z=1-t and the point A: (2,3,4)

First, write the line in vector form r=(1 1 1) + t(1 2 -1). Consider a point P on the line such that the line connecting P and A is perpendicular to L. The vector P->A is (2 3 4) - (1 1 1) - t(1 2 -1) = (1 2 3) - t(1 2 -1).

To make P->A perpendicular to L, the dot product of P->A and the direction vector of L must be zero. This means (1 2 -1) . (1-t 2-2t 3+t)=0 so 1-t+4-4t-3-t=0 or 2-6t=0 so t=1/3. This means that P is (4/3 7/3 -2/3) and P->A is (2/3 4/3 10/3). Therefore the shortest distance between A and L is sqrt(4/9+16/9+100/9)=2sqrt(10/3).

ZT
Answered by Zac T. Maths tutor

5794 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation d/dx((x^3 + 3x^2)ln(x)) = 2x^2 + 5x, leaving your answer as an exact value of x. [6 marks]


Differentiate 2^x


The functions f and g are defined by f : x → 2x + ln 2, g : x → e^(2x). Find the composite function gf, sketch its graph and find its range.


Given that x=3 is a solution to f(x)= 2x^3 - 8x^2 + 7x - 3 = 0, solve f(x)=0 completely.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences