What is the signed area between the curve y = x^2 - 4 and the x-axis?

The curve y = x^2 - 4 is a parabola that crosses the x axis at x = - 2 and x = 2, so the area that we are looking for is the area within the parabola when y <= 0 and -2<= x <= 2. So we expect our area to be negative, as this part of the graph of the curve lies under the x-axis.To find the area we integrate the function x^2 - 4 between -2 and 2.The solution to the integral is [x^3/3 -4x] evaluated at 2 minus [x^3/3 -4x] evaluated at -2. That will give the result 16/3 - 16 = -32/3. So the signed area is -32/3 and this is negative as expected.

Answered by Maths tutor

8625 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

An arithmetic progression has a tenth term (a10) = 11.1 and a fiftieth term (a50) = 7.1 Find the first term (a) and the common difference (d). Also find the sum of the first fifty terms (Sn50) of the progression.


Solve the simultaneous equation y+4x+1=0 and y^2+5x^2+2x+0.


How do you solve a quadratic inequality eg find the values of x for which x^2 -6x +2 < -3


Find the minimum value of the function, f(x)= x^2 + 5x + 2, where x belongs to the set of Real numbers


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning