How would you differentiate ln(sin(3x))?

To answer this question we require the chain rule, which states that dy/dx=(dy/du)*(du/dx)

To use this formula in our question, we can let y=ln(sin(3x))=ln(u) where u=sin(3x)

Firstly, using a standard result we have dy/du=1/u

Secondly, we must work out du/dx. Another standard result is that d/dx(sin(ax))=acos(ax) for any constant number a. This means du/dx=3cos(3x)

Putting the two parts together, we find that our answer, given by dy/dx, is equal to

3*cos(3x)1/u=(3cos(3x))/(ln(sin(3x)))

HD
Answered by Hannah D. Maths tutor

11026 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve with equation y=f(x) passes through point P at (4,8). Given that f'(x)=9x^(1/2)/4+5/2x^(1/2)-4 find f(X).


Integrate x * sin(x) with respect to x by using integration by parts


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


Find the derivative of the function y=3x^2e^(2x)sin(x).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences