How would you differentiate ln(sin(3x))?

To answer this question we require the chain rule, which states that dy/dx=(dy/du)*(du/dx)

To use this formula in our question, we can let y=ln(sin(3x))=ln(u) where u=sin(3x)

Firstly, using a standard result we have dy/du=1/u

Secondly, we must work out du/dx. Another standard result is that d/dx(sin(ax))=acos(ax) for any constant number a. This means du/dx=3cos(3x)

Putting the two parts together, we find that our answer, given by dy/dx, is equal to

3*cos(3x)1/u=(3cos(3x))/(ln(sin(3x)))

HD
Answered by Hannah D. Maths tutor

11619 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


Having a rectangular parking lot with an area of 5,000 square yards that is to be fenced off on the three sides not adjacent to the highway, what is the least amount of fencing that will be needed to complete the job?


Find the stationary point of the curve y = -2x^2 + 4x.


Integrate 3x^2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning