How would you differentiate ln(sin(3x))?

To answer this question we require the chain rule, which states that dy/dx=(dy/du)*(du/dx)

To use this formula in our question, we can let y=ln(sin(3x))=ln(u) where u=sin(3x)

Firstly, using a standard result we have dy/du=1/u

Secondly, we must work out du/dx. Another standard result is that d/dx(sin(ax))=acos(ax) for any constant number a. This means du/dx=3cos(3x)

Putting the two parts together, we find that our answer, given by dy/dx, is equal to

3*cos(3x)1/u=(3cos(3x))/(ln(sin(3x)))

HD
Answered by Hannah D. Maths tutor

11527 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation to the tangent to the curve x=cos(2y+pi) at (0, pi/4)


Sketch y = 9x – 4x^3, showing where the curve crosses the x axis.


Let y(x) be a function with derivative y'(x)=x^2-2 and y(0) =7. What is the value of y at x = 3?


Find the tangent to the curve y=(3/4)x^2 -4x^(1/2) +7 at x=4, expressing it in the form ax+by+c=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning