Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x

5cos3x = 5cosxFirstly -5cosx from both sides and divide through by 5We have:cos3x-cosx = 0We can factorise this:cosx(cos2x - 1) = 0 For this to be true either:cosx = 0 or cos2x = 1for cosx = 0This occurs at pi/2 and 3pi/2.for cos2x = 1We have cosx = +/- 1 (do not forget to take +/- sqrt)This occurs at 0, pi, 2pi.Our solutions are:x = 0, pi/2, pi, 3pi/2, 2pi

GC
Answered by Georgiana C. Maths tutor

4273 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 6x^2


At time t = 0 a particle leaves the origin and moves along the x-axis. At time t seconds, the velocity of P is v m/s in the positive x direction, where v=4t^2–13t+2. How far does it travel between the times t1 and t2 at which it is at rest?


Find the sum and product of the roots of the equation 2x^2+3x-5=0


Core 3 Differentiation: If y = (3x^2 + 2x + 5)^10, find its derivative, dy/dx. Hint: Use the chain rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning