Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x

5cos3x = 5cosxFirstly -5cosx from both sides and divide through by 5We have:cos3x-cosx = 0We can factorise this:cosx(cos2x - 1) = 0 For this to be true either:cosx = 0 or cos2x = 1for cosx = 0This occurs at pi/2 and 3pi/2.for cos2x = 1We have cosx = +/- 1 (do not forget to take +/- sqrt)This occurs at 0, pi, 2pi.Our solutions are:x = 0, pi/2, pi, 3pi/2, 2pi

GC
Answered by Georgiana C. Maths tutor

4469 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you solve the equation e^2x - 2e^x - 3 = 0 ?


(x-4)^3


The curve has equation y = x^3 - x^2 - 5x + 7 and the straight line has equation y = x + 7. One point of intersection, B, has coordinates (0, 7). Find the other two points of intersection, A and C.


Express (16x^2 + 4x^3)/(x^3 + 2x^2 - 8x) + 12x/(x-2) as one fraction in its simplest form.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning