A is the point with coordinates (5, 9) B is the point with coordinates (d, 15) The gradient of the line AB is 3 Work out the value of d.

A straight line equation is defined as y=mx+c where m is the gradient and c is the intercept. Since the gradient is already said to be 3 we can substitute this in to mean the equation for AB is y=3x+c. Since we know point A we can substitute the values for x and y in to solve for c.9=3(5)+c9=15+cc= -6y=3x-6Now we have the equation of the line we can sub in point B to find what d is.15=3(d)-621=3dd=7

TA
Answered by Tarun A. Maths tutor

9954 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove the quadratic formula for ax^2 + bx + c = 0, where a is non 0 and a,b and c are reals.


Use BIDMAS to answer 2 + 7 x 10


Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.


Two points P(–4, –1) and Q(–8, 5) are joined by a straight line. Work out the coordinates of the midpoint of the line PQ.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning