The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C

y = 1/2x^3 - 9x^3/2 + 8/x + 30y = 1/2x^3 - 9x^3/2 + 8x-1 + 30dy/dx = 3/2x^2 - 27/2x^1/2 - 8x^-2 + 0dy/dx = 3/2x^2 - 27/2x^1/2 - 8/x^2substitute x=4 into equation for yy = 1/2(4)^3 - 9(4)^3 + 8/4 +30y = 32 - 72 + 2 + 30y = -8therefore P lies on C

Answered by Maths tutor

9394 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

∫ (ln(x)/(x*(1+ln(x))^2) dx


Imagine a sector of a circle called AOB. With center O and radius rcm. The angle AOB is R in radians. The area of the sector is 11cm². Given the perimeter of the sector is 4 time the length of the arc AB. Find r.


Find the vertex coordinates of parabola y = 2x^2 - 4x + 1


How many lines of method should I write in order to get all of the marks?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning