The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?

Our task is to find out the value of k, which we can determine from the equations for velocity or acceleration if we know 2 of the 3 variables in either equation. We are given the value of acceleration at t(20)=1.3ms^-1, so we should substitute these values into the equation for acceleration, which we can calculate by differentiating the velocity: a = k + 0.06t. This gives us 1.3 = k + 0.06(20) -> 1.3 = k + 1.2 -> 0.1 = k.

LM
Answered by Lascelle M. Maths tutor

8166 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = exp(x^2), find dy/dx


Find the range of a degree-2 polynomial function such as 2x^2 +1, or x^2 + 2x - 3.


How do I find the points of intersection between two curves?


y = 2ln(2x + 5) – 3x/2 , x > –2.5 find an equation to the normal of the curve when x = -2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences