The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?

Our task is to find out the value of k, which we can determine from the equations for velocity or acceleration if we know 2 of the 3 variables in either equation. We are given the value of acceleration at t(20)=1.3ms^-1, so we should substitute these values into the equation for acceleration, which we can calculate by differentiating the velocity: a = k + 0.06t. This gives us 1.3 = k + 0.06(20) -> 1.3 = k + 1.2 -> 0.1 = k.

LM
Answered by Lascelle M. Maths tutor

8481 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation x^2 +2x(y)^2 + y =4 . Find the expression dy/dx in terms of x and y [6]


differentiate the following equation: y = x^2 + 2x


Find the equation of a straight line that passes through the coordinates (12,-10) and (5,4). Leaving your answer in the form y = mx + c


y = 4x / (x^2 + 5). Find dy/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning