The velocity of a car at time, ts^-1, during the first 20 s of its journey, is given by v = kt + 0.03t^2, where k is a constant. When t = 20 the acceleration of the car is 1.3ms^-2, what is the value of k?

Our task is to find out the value of k, which we can determine from the equations for velocity or acceleration if we know 2 of the 3 variables in either equation. We are given the value of acceleration at t(20)=1.3ms^-1, so we should substitute these values into the equation for acceleration, which we can calculate by differentiating the velocity: a = k + 0.06t. This gives us 1.3 = k + 0.06(20) -> 1.3 = k + 1.2 -> 0.1 = k.

LM
Answered by Lascelle M. Maths tutor

8621 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u


Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


Show that arctan(x)+e^x+x^3=0 has a unique solution.


For a curve of equation 2ye^-3x -x = 4, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning