Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.

1.) Find the integral of each term. --> [2x +7ln(x)]. --> Uses standard integrals--> e.g. that the integral of 1/x is ln(x).
2.) substitute values into the integral. --> [2(e)+ 7ln(e)]- [2(1)+7ln(1)] --> (2e +7)- (2+7(0)) --> uses knowledge about natural logarithms, e.g. that ln(1)= 0 and ln(e)= 13.) present answer. --> ANSWER= 2e +5. --> Presented in the simplest possible form, in exact terms (as required by the question).

Answered by Maths tutor

3377 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the equation y = (1+x^2)^3 with respect to (w.r.t.) x using the chain rule. (Find dy/dx)


Find the area of the region, R, bounded by the curve y=x^(-2/3), the line x = 1 and the x axis . In addition, find the volume of revolution of this region when rotated 2 pi radians around the x axis.


How do I find the area bounded by the curve y=-x^2+4 and the line y=-x+2?


A circle has eqn x^2 + y^2 + 2x - 6y - 40 = 0. Rewrite in the form (x-a)^2 + (y-b)^2 = d.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences