Find the exact value of the integral of (2+7/x), between x=1 and x=e. Give your answer in terms of e.

1.) Find the integral of each term. --> [2x +7ln(x)]. --> Uses standard integrals--> e.g. that the integral of 1/x is ln(x).
2.) substitute values into the integral. --> [2(e)+ 7ln(e)]- [2(1)+7ln(1)] --> (2e +7)- (2+7(0)) --> uses knowledge about natural logarithms, e.g. that ln(1)= 0 and ln(e)= 13.) present answer. --> ANSWER= 2e +5. --> Presented in the simplest possible form, in exact terms (as required by the question).

Answered by Maths tutor

3295 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


Differentiate with respect to x y=(x^3)ln2x


The equation: x^3 - 12x + 6 has two turning points. Use calculus to find the positions and natures of these turning points.


How do I integrate ln(x), using integration by parts?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences