Find the equation of the normal to the curve 2x^3+3xy+2/y=0 at the point (1,-1)

Step 1 Use Implicit differentiation with respect to x and y - 6x^2+3y + 3x(dy/dx) - 2/y^2(dy/dx) = 0Step 2 Write the equation as dy/dx =... - dy/dx = (6x^2 + 3y)/(2/y^2 - 3x)Step 3 Input (1,-1) into the equation to find gradient of tangent. - Gradient of tangent = -3Step 4 Use knowledge the knowledge that the gradient of the normal is equal to the negative reciprocal of the tangent. - Gradient of Normal = 1/3Step 5 Write the equation of the normal in point slop form- y+1 = 1/3(x-1)Step 6 Rearrange so it is in the form y=mx+c - y=1/3(x)-4/3















Answered by Maths tutor

2934 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the equation of a tangent to a curve at a certain point, from the equation of the curve?


Find the integral of (x+4)/x(2-x) .dx


How can you find the coefficients of a monic quadratic when you know only one non-real root?


Shower-cleaner liquid is sold in spray bottles. The volume of liquid in a bottle may be modelled by a normal distribution with mean 955 ml and a standard deviation of 5 ml. Determine the probability that the volume in a particular bottle is:


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences