The first term of an infinite geometric series is 48. The ratio of the series is 0.6. (a) Find the third term of the series. (b) Find the sum to infinity. (c) The nth term of the series is u_n. Find the value of the sum from n=4 to infinity of u_n.

Note here: u_n indicates u subscript n.

(a) u_1 = 48 and the ratio, r = 0.6

Using a calculator, u_2 = 48 x 0.6 = 28.8

u_3 = 28.8 x 0.6 = 17.28

(b) We have the known result that the sum to infinity of a geometric series is a/(1-r) where a is the first term and r is the common ratio.

Therefore, the sum to infinity here is 48/(1-0.6) = 48/0.4 = 120

(c) We now want the sum from the fourth term to infinity. We can use the same formula as before, but replacing the first term which we called a with the fourth term of the sequence.

Calculating the fourth term: u_4 = 17.28 x 0.6 = 10.368

Therefore, our sum is equal to 10.368/(1-0.6) = 10.368/0.4 = 25.92

FS
Answered by Felix S. Maths tutor

11917 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If a circle passes through points (2,0) and (10,0) and it has tangent line along the y-axis, then what are the possible equations of the circle?


solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2


Find the Co-ordinates and nature of all stationary points on the curve y=x^3 - 27x, and attempt to sketch the curve


Solve the simultaneous equations: y=x+1, x^2+y^2=13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences