The equation of a curve is y = ax^2 + 3x + c where a and b are integers. The curve has a minimum point at (1,1), find a and c

We start by trying to find out the values of a and c using the information about the minimum point. We know we can rearrange the right hand side by completing the square: y = a(x^2 + 3x)+cy = a(x+3/2a)^2+c-(9/(4a)) as y = a(x^2 + (3/a)x + 9/(4a2)) = ax^2 + 3x + 9/4a to ensure that this is equivalent to ax^2 +3x + c, we substract 9/4a and add c. we know that this is a minimum point so we need the square to be minimum as if the inside is negative, negative squared is positive and if it is positive, positive squared is positive the minimum must be where the square is 0. So x = -3/(2a) so 1 = -3/2a so a = -3/2 as -3/(2*(-3/2)) = 1. We now know that 1 = 0+c-(9/4(-3/2)), 1 = c + (9/6) so c = -3/6 .

LE
Answered by Larbi E. Maths tutor

2763 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The numbers a,b,c and d satisfy the equations: a+2b+3c+4d=k and 4a=3b=2c=d. What is the smallest value of k for which a,b,c and d are positive integers?


The hypotenuse of a triangle is 10m and another side is 8m. What is the length of side x?


A pyramid has a square base with sides of length 4m and a height 3m. What is the length from one of the base corners to the top of the pyramid?


work out 20% of 14000


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning