Consider the function y = x.sin(x); differentiate the function with respect to x

Using the product rule :u = x, so du/dx = 1
v = sin(x), so dv/dx = cos(x)
Therefore dy/dx = v(du/dx) + u(dv/dx) So dy/dx = sin(x) + x.cos(x)

BR
Answered by Ben R. Maths tutor

4164 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you determine the nature of a graphs stationary point? e.g y = 1+2x-x^2


Integral of (2(x^3)-7)/((x^4)-14x)


Show that 1+cot^2(x)=cosec^2(x)


Find the derivative of f(x)=x^2*e^x+x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning