Consider the function y = x.sin(x); differentiate the function with respect to x

Using the product rule :u = x, so du/dx = 1
v = sin(x), so dv/dx = cos(x)
Therefore dy/dx = v(du/dx) + u(dv/dx) So dy/dx = sin(x) + x.cos(x)

BR
Answered by Ben R. Maths tutor

4202 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points P (2,3.6) and Q(2.2,2.4) lie on the curve y=f(x) . Use P and Q to estimate the gradient of the curve at the point where x=2 .


A curve has the equation y=sin(x)cos(x), find the gradient of this curve when x = pi. (4 marks)


Use Integration by parts to find ∫ xsin3x dx


Find the equation of the tangent to the curve y = (5x+4)/(3x -8) at the point (2, -7)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning