solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx

\frac{1}{x^2+x}=\frac{A}{x} + \frac{B}{x+1}, 1=A(x+1)+Bx, let x=-1: 1=-B, B=-1let x=0: 1=A, A=1Hence, \int_{1}^{2}{\frac{1}{x^2+x}dx} = \int_{1}^{2}{\frac{1}{x}dx} - \int_{1}^{2}{\frac{1}{x+1}dx}=[ln(x)-ln(x+1)]{1}^{2}=[ln(/frac{x}{x+1})]{1}^{2}=ln(\frac{2}{3})-ln(\frac{1}{2})=ln(\frac{4}{3})=2*ln(2)-ln(3)

Answered by Maths tutor

3497 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(The question is too long so it's marked at the top of the answer space, sorry for any inconveniences)


Find the solutions to z^2 = i


The air pressure in the cabin of a passenger plane is modelled by the equation: P(x) = 3cos(x/2) - sin(x/2) where x is the altitude. Express P(x) in the form Rcos(x/2 +z) where z is acute and in degrees and then find the maximum pressure


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning