solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx

\frac{1}{x^2+x}=\frac{A}{x} + \frac{B}{x+1}, 1=A(x+1)+Bx, let x=-1: 1=-B, B=-1let x=0: 1=A, A=1Hence, \int_{1}^{2}{\frac{1}{x^2+x}dx} = \int_{1}^{2}{\frac{1}{x}dx} - \int_{1}^{2}{\frac{1}{x+1}dx}=[ln(x)-ln(x+1)]{1}^{2}=[ln(/frac{x}{x+1})]{1}^{2}=ln(\frac{2}{3})-ln(\frac{1}{2})=ln(\frac{4}{3})=2*ln(2)-ln(3)

Answered by Maths tutor

3698 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation y = 1/2x^3 - 9x^3/2 + 8/x + 30, find dy/dx. Show that point P(4, -8) lies on C


find the integral of f'(x)=2x+5


Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.


Express 4sinx + 3cosx in the form Rcos(x-a)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning