solve the following definite integral by decomposition into partial fractions: \int_{1}^{2}{\frac{1}{x^2+x}}dx

\frac{1}{x^2+x}=\frac{A}{x} + \frac{B}{x+1}, 1=A(x+1)+Bx, let x=-1: 1=-B, B=-1let x=0: 1=A, A=1Hence, \int_{1}^{2}{\frac{1}{x^2+x}dx} = \int_{1}^{2}{\frac{1}{x}dx} - \int_{1}^{2}{\frac{1}{x+1}dx}=[ln(x)-ln(x+1)]{1}^{2}=[ln(/frac{x}{x+1})]{1}^{2}=ln(\frac{2}{3})-ln(\frac{1}{2})=ln(\frac{4}{3})=2*ln(2)-ln(3)

Answered by Maths tutor

3388 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to sketch a funtion f(x)


You are given the equation of the line y=x^3+x^2-2x. Find the stationary points of the curve and determine the maximum and minimum points and find where it crosses the x-axis and thus sketch the graph


How do you find the gradient of a line at a certain point when f(x) is in the form of a fraction, where both the numerator and denominator are functions of x?


Given the function y=(x+1)(x-2)^2 find i) dy/dx ii) Stationary points and determine their nature


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning