How can we simplify sqrt(48) - 6/sqrt(3) ?

Observing that 48 = 24 * 2 = 1222 = 443, we can write square root of 48 as being square root of 443, which means that sqrt(48) = 22sqrt(3).Now, we can multiply the new result 22sqrt(3) with sqrt(3) such that we can have a common denominator on the bottom.So, 22sqrt(3)sqrt(3)/sqrt(3) - 6/sqrt(3) = (22*3 - 6)/sqrt(3) = 6/sqrt(3).If we want our answer to look prettier, we can multiply again with sqrt(3) such that the new result could look as 6 * sqrt(3) /3 = 2sqrt(3).

DG
Answered by Dorian G. Maths tutor

8945 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the remainder when you divide 2x^3+7x^2-4x+7 by x^2+2x-1?


What is a complex number?


Express 3sin(2x) + 5cos(2x) in the form Rsin(2x+a), R>0 0<a<pi/2


For a curve of equation 2ye^-3x -x = 4, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences