How can we simplify sqrt(48) - 6/sqrt(3) ?

Observing that 48 = 24 * 2 = 1222 = 443, we can write square root of 48 as being square root of 443, which means that sqrt(48) = 22sqrt(3).Now, we can multiply the new result 22sqrt(3) with sqrt(3) such that we can have a common denominator on the bottom.So, 22sqrt(3)sqrt(3)/sqrt(3) - 6/sqrt(3) = (22*3 - 6)/sqrt(3) = 6/sqrt(3).If we want our answer to look prettier, we can multiply again with sqrt(3) such that the new result could look as 6 * sqrt(3) /3 = 2sqrt(3).

DG
Answered by Dorian G. Maths tutor

9340 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would you find the coordinates of the intersections of a graph with the x and y axes, and the coordinates of any turning points?


Using the substitution x = 2cosu, find the integral of dx/((x^2)(4-x^2)^1/2), evaluated between x=1 and x=sqrt(2).


How to draw the inverse of a function ?


How do you find the gradient of a parametric equation at a certain point?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning