How can we simplify sqrt(48) - 6/sqrt(3) ?

Observing that 48 = 24 * 2 = 1222 = 443, we can write square root of 48 as being square root of 443, which means that sqrt(48) = 22sqrt(3).Now, we can multiply the new result 22sqrt(3) with sqrt(3) such that we can have a common denominator on the bottom.So, 22sqrt(3)sqrt(3)/sqrt(3) - 6/sqrt(3) = (22*3 - 6)/sqrt(3) = 6/sqrt(3).If we want our answer to look prettier, we can multiply again with sqrt(3) such that the new result could look as 6 * sqrt(3) /3 = 2sqrt(3).

DG
Answered by Dorian G. Maths tutor

8711 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How does integration by parts work ad when to use it?


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences