What is the equation of the tangent to the circle x^2 + y^2 = 25 at the point (-3, -4)?

From circle theorems, the tangent to a circle is perpendicular to the radius, and so to find the tangent we can use the gradient of the radius connecting the point (-3, -4) to the centre of the circle and then find the negative reciprocal of it...From the equation we can see that the centre of the circle is the point (0,0) as the x and y parts are written as x^2 and y^2. ( if the question had for example (x+1)^2 or (y-2)^2 this would indicate that the circle had a non origin centre point)The two points, (0,0) and (-3, -4) lie on the radius. To find the gradient of this line we use change in y/change in x...0-(-4)/0-(-3)= 4/3The tangent is perpendicular to this radius so the gradient of the tangent will be the negative reciprocal ...The negative reciprocal just means -1/your number , so in this case -1/(4/3) = -3/4Now we know that the tangents gradient we can begin to write the equation of it... it is a straight line of the form y=mx+c...y = -3/4x +cTo find the constant c, we know that the line passes through (-3, -4) so we can substitute these values into the equation...-4 = -3/4(-3) +C-4= 9/4 +C-4-9/4=CC = -25/4Finally adding C to our equation we get...Y = -3/4 X - 25/4

RA
Answered by Rebecca A. Maths tutor

7250 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise 100-x^2


Simplify 125^-2/3


The points (0, -5) and (5, 0) lie on a curve y=x^2 + ax + b. Find the stationary points on the curve.


A man stands 9 metres from the base of a tree. He knows the distance from where he is standing and the top of the tree is 15 metres. How tall is the tree?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning