Find the integral of 4sqrt(x) - 6/x^3.

The easiest way to do this is to break the integral up into it's separate parts. We have:integral of 4sqrt(x)andintegral of -6/x^3
Both of which have constants that can be taken out, i.e. 4 and 6, respectively.So all we need to compute is the integral of sqrt(x), and the integral of 1/x^3. These can be rewritten as x^(1/2), and x^-3, respectively. With the terms in this form it's easier to see that we can use the properties of polynomials to do these computations. sqrt(x) = x^(1/2) integrates to (x^(3/2))/(3/2) = 2/3 * x^(3/2), and 1/x^3 = x^-3 integrates to x^-2/-2 = -1/2x^2.
We can substitute these values back into our integral to see that 4sqrt(x) integrates to 4 * 2/3 * x^(3/2) = 8/3 * x^(3/2), and 6/x^3 integrates to -6 * -1/2x^2 = 3/x^2. The final step is to add the integrating constant, c, as this is an indefinite integral. Hence the final answer is 8/3 * x^(3/2) + 3/x^2 + c.

SP
Answered by Sam P. Maths tutor

2996 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.


How do you rationalise the denominator?


Can you explain where the "Integration by parts" formula comes from?


Calculate the gradient of the function y=x^2+6x when y=-9


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning