How do I find the limit of a sequence that is expressed as a fraction?

There are a number of ways of looking at the limiting behaviour of a fraction. Let’s look at three examples:1) a(n) = 2n+1/7n —> divide into two separate terms, that both clearly converge. 2) b(n) = 2/( n^2-1) = (2) x (1)/(n+1)(n-1) = (2) ((A/n+1)+(B/n-1)) = (2) ((-1/n+1)+(1/n-1)) —> Partial fractions method with difference of two squares. 3) c(n) = 8n+7 / (x+2)(x-1) = 3/x+2 + 5/x-1 —> Partial fractions (include other rules too).

ZS
Answered by Zayn S. Maths tutor

3110 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y = x^2 + 3x + 2 at x = 1


Curve C has equation x^2 - 3xy - 4y^2 + 64 = 0. a) find dy/dx in terms of x and y. b) find coordinates where dy/dx=0.


The graph above shows the line y = 3*x^2. Find the area beneath the graph from y = 0 to y = 5.


Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning