(a)Show that the lines y=3x+7 and 2y–6x=8 are parallel. [3 marks] (b) Is the point (–5, –6) above, below or on the line y = 3x + 7 ? Do not use a graphical method. [2 marks] [Total 5 marks]

(a) The gradient of y=3x+7 is 3 and rearrange 2y–6x=8 to y=3x+4 to show the gradient of 2y–6x=8 is also(6÷2=) 3. Alternatively, choose a value for x and find y value for both lines (e.g. (0, 7) and (0, 4)); then choose a different value for x and find y value for both lines again (e.g. (1, 10) and (1, 7)); state that the y values are a constant distance apart so they are parallel lines.(b)Substitute -5 in the equation e.g. 3 × –5 + 7 = –8 to get the point (–5, –8). Using y co-ordinates -6 is higher than -8 so (-5,-6) is above the line.

II
Answered by Iman I. Maths tutor

6268 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 7x-5>22-2x


A linear equation has terms: a+2b, a + 6b, a + 10b, ......., ........ the second term equals 8 and the fifth term equals 44. Work out the value of a & b


What is the value of x if x^2 - 3x +2=0?


A square has sides of length x cm. The length of a rectangle is equal to the perimeter of this square. The perimeter of this rectangle is 14x cm. Find an expression for the width of this rectangle. Give your answer in terms of x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences