A football pitch has a length of the xm. Its width is 25m shorter than the length. The area of the pitch is 2200m2. Show that x2 - 25x - 2200 =0 and work out the length of the football pitch.

Draw rectangle with length x and width (x - 25)show that area = length * width = x(x -25) = x2 - 25xx2 - 25x = 2200x2 - 25x -2200 = 0This cannot be factorised therefore must use quadratic equation: x = [-b +(/-) srt(b2 - 4ac)]/2ax = [25 + srt(25sq - 41(-2000))]/2 AND x = [25 - srt(25sq - 41(-2000))]/2x = –36.04 and 61.04 State that x = 61.04 since x cannot be < 0

SO
Answered by Sophie O. Maths tutor

3154 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

I set up a tent (assume it’s a regular triangular prism) of length 2.2m. The triangular face of the tent is an isosceles triangle. The two identical sides are both 1.4m long and have an angle of 34degrees between them. Work out the volume of the tent -3sf


work out 20% of 14000


Solve 4x+y=7 and 3x+2y=9


Solve x^2 - 3x - 10 = 0 for x by a) factorising and b) the quadratic equation. Then draw a graph of the function, marking when it touches each of the axes.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences