Find the exact solution to ln(2y+5) = 2 + ln(4-y)

Solution is y = 4e2 - 5 /2+e2
By applying log laws we can reach the following:
ln(2y+5/4-y) = 2
Given that ln x = log e x :e2 = 2y+5/4-y
Solve linearly :
2y+5 = e2(4-y)
2y+5 = 4e2 - ye2
2y + ye2= 4e2 -5
y(2 + e2) = 4e2 - 5
y = 4e2 - 5 /2+e2

MH
Answered by Michael H. Maths tutor

9088 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= (3x^2+2x-6)^8


Express 5/[(x-1)(3x+2)] as partial fractions.


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


how do i sketch the graph of y=ln(|x|) ?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning