Find the exact solution to ln(2y+5) = 2 + ln(4-y)

Solution is y = 4e2 - 5 /2+e2
By applying log laws we can reach the following:
ln(2y+5/4-y) = 2
Given that ln x = log e x :e2 = 2y+5/4-y
Solve linearly :
2y+5 = e2(4-y)
2y+5 = 4e2 - ye2
2y + ye2= 4e2 -5
y(2 + e2) = 4e2 - 5
y = 4e2 - 5 /2+e2

MH
Answered by Michael H. Maths tutor

8013 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a curve has an equation: y = x^2 - 2x - 24x^0.5 x>0 find dy/dx and d^2y/dx^2


A curve C has the equation x^3 + 6xy + y^2 = 0. Find dy/dx in terms of x and y.


Why do we need to differentiate?


Two particles, A and B, are moving directly towards each other on a straight line with speeds of 6 m/s and 8 m/s respectively. The mass of A is 3 kg, and the mass of B is 2 kg. They collide to form a single particle of speed "v" m/s. Find v.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences