n is an integer greater than 1. Prove algebraically that n^2 – 2 – (n – 2)^2 is always an even number.

1) Expand the brackets: (n-2)2 = (n-2)(n-2) = n2 - 2n - 2n +4 = n2 - 4n + 42) Substitute this into the original expression: n2- 2 - (n2 - 4n +4) = n2 - 2 - n2 + 4n - 4 = 4n - 6 3) Reduce this: 4n - 6 = 2(2n - 3)4) Conclusion: This is always an even number as for all values of n the expression is a multiple of 2

JM
Answered by James M. Maths tutor

5259 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Convert 0.1727272... to a fraction in its lowest terms.


When do I use the sin rule and when do I use the cosine rule?


(6x+4)/(2x- 2) + 3 = 4 solve for x


Solve the following set of equations. 3x + 2y = 5, 2x + 3y =6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning