n is an integer greater than 1. Prove algebraically that n^2 – 2 – (n – 2)^2 is always an even number.

1) Expand the brackets: (n-2)2 = (n-2)(n-2) = n2 - 2n - 2n +4 = n2 - 4n + 42) Substitute this into the original expression: n2- 2 - (n2 - 4n +4) = n2 - 2 - n2 + 4n - 4 = 4n - 6 3) Reduce this: 4n - 6 = 2(2n - 3)4) Conclusion: This is always an even number as for all values of n the expression is a multiple of 2

JM
Answered by James M. Maths tutor

5127 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If x^2 = 16, why isn't the answer just x = 4?


I know the formula, but I don't understand it.


Make y the subject of the following equation: 2x - y = 5


Solve 2x+3 + ((4x-1)/2) = 10


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning