What is rationalising a fraction?

So firstly, when we do a rationalisation problem, we are trying to get rid of any surds in the denominator(the bottom part of a fraction). Surds are numbers that have been square rooted and do not equal a whole number, and can be identified by any number with a √ sign before it. Normally, a question like this looks like this: Rationalise this expression (3 - √7)/(5 + √7). Remember to rationalise, we only need to get rid of the surd in the denominator! We do this by multiplying both the top half of the fraction and the bottom half of the fraction by (5 - √7). What do you notice about this?We can see that anything divided by itself is 1, so all we're doing is multiplying the original expression by 1. Also the expression we are timesing both halves by is the same as the denominator but we have changed the sign in the middle. This is crucial as it will allow for us to 'cancel' out the surd. We then carry out the multiplication: (3-√7)(5-√7)/(5+√7)(5-√7) = (15 - 3√7 - 5√7 + (√7)^2)/ 25 - 5√7 +5√7 - (√7)^2. As the surd is a square root, squaring it means it equals the number within the √ sign. So (√7)^2 = 7. Also, 5√7 - 5√7 = 0 so in the denominator we are left with 25 - 7 =18. Overall we are left with:(22-8√7)/18. We have successfully rationalised the denominator as there is no surd left in the bottom! Now you try:Rationalise this expression: (9+√2)/(4 - √3)

AR
Answered by Aditi R. Maths tutor

3229 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A triangle has sides of 4cm and 5cm with the hypotenuse unknown. What is the length of the unknown side?


n is an integer such that 3n + 2 < 14 and 6n/(n^2+5) > 1. Find all possible values of n.


at a shop in the US tax is added onto the price of an item at the till. this shop adds 5.7% of the items value to the total cost. if you buy a ball priced as $15, how much will you have to pay ?


Why is completing the square useful and how do you do it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning