The radius of a circular disc is increasing at a constant rate of 0.003cm/s. Find the rate at which the area is increasing when the radius is 20cm.

The rate at which the area is increasing, dA/dt, can be written with terms we know or can find out easily: dA/dt=dA/dr x dr/dt.Area of a disc, A = (pi)r^2dA/dr=2(pi)rRate of change of radius, dr/dt=0.003cm/sTherefore, dA/dt=2(pi)r x 0.003= 2(pi) x 20 x 0.003=0.12(pi)= 0.377cm^2/s

HH
Answered by Henry H. Maths tutor

11977 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I integrate by parts?


A car is moving on an inclined road with friction acting upon it. When it is moving up the road at a speed v the engine is working at power 3P and when it is moving down the road at v the engine is working at a power P. Find the value of P.


Integrate 2x/[(x+1)(2x-4)


Find the area bounded by the curve y=(sin(x))^2 and the x-axis, between the points x=0 and x=pi/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning