Factorise and solve x^2 - 8x + 15 = 0

Step 1: Factorise. In the final factorised form, your answer would be written in the form (x+a)(x+b). When expanded, this becomes: x^2 + (a+b)x + ab. Therefore, to factorise x^2 - 8x + 15, you need a + b = -8 and ab = 15. You know that a and b are both negative, as their addition is negative, but multiplication is positive. Finally, factors of 15 are: 1, 3, 5, 15. The only combination of numbers that work in this situation are 3 and 5. Therefore you know that a = -5 and b = -3. Factorised form is given as: (x-5)(x-3) = 0. Step 2: Solve. For two numbers to be multiplied together to make 0, one number must be 0 itself. Hence, either (x-5) = 0 or (x-3) = 0. We need to work on both scenarios, but I'll start with x-5 = 0. If x - 5 = 0, then x = 5 (you simply add 5 to the both sides). If x - 3 = 0, then x = 3 (same logic). Therefore, you obtain your two solutions, x = 5 and x = 3. At the end of your answer, state your two results clearly so your examiner can give you all the marks.

HS
Answered by Hanan S. Maths tutor

3194 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 3x + 2y = 4, 4x + 5y = 17


Renee buys 5 kg of sweets to sell. She pays £10 for the sweets. Renee puts all the sweets into bags. She puts 250 g of sweets into each bag. She sells each bag of sweets for 65p. Renee sells all the bags of sweets. Work out her percentage profit.


Solve the simultaneous equations: 5x + y = 21, x - 3y = 9


Expand (x-5)(2x-3)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning